2011년부터 간판 및 LED 스트립 조명 공장

2011년부터 간판 및 LED 스트립 조명 공장

IEC 62471 블루라이트 위험 설명

Blue light is a natural part of the visible spectrum, but modern LED lighting contains a proportionally higher amount of blue wavelengths—typically in the 400–500 nm range—due to the way white LEDs are manufactured. Most white LEDs use a blue LED chip paired with phosphor coating to generate full-spectrum white light. While this technology provides high efficiency and excellent lumen output, it also introduces concerns about blue light hazard, a photochemical risk to the human retina caused by excessive exposure to high-energy blue radiation.

In recent years, regulators, lighting designers, and OEM manufacturers have paid increasing attention to the potential effects of blue light. Long-term or high-intensity exposure may contribute to retinal stress, visual discomfort, and circadian rhythm disruption. As LED lighting becomes widely used in offices, homes, schools, commercial spaces, and displays, understanding and controlling blue light hazard has become essential for ensuring both visual safety and compliance with photobiological standards.

This article focuses on blue light hazard as defined in IEC 62471, explaining the key technical metrics, risk group classifications, and how to choose LED strip lights with lower blue light hazard for professional lighting applications.

What Is Blue Light Hazard Under IEC 62471?

Blue light hazard refers to the potential photochemical damage to the retina caused by exposure to high-energy blue wavelengths, typically within 400–500 nm. When the eye is exposed to intense blue light for a sufficient duration, reactive oxygen species can form in retinal tissues, accelerating retinal cell degradation. This effect is cumulative and depends on both the intensity and exposure time, making it a critical safety consideration for lighting products viewed directly, such as LED strips, modules, and displays.

IEC 62471 is the internationally recognized standard that evaluates the photobiological safety of lamps and lamp systems. It defines measurement methods, hazard action spectra, exposure limits, and risk group classifications for different photobiological risks—including blue light hazard, UV hazard, and IR radiation hazard. For blue light evaluation specifically, IEC 62471 uses blue-light-weighted radiance and calculates maximum safe exposure times to determine the appropriate risk group.

As LED lighting technology continues to advance, compliance with IEC 62471 becomes essential. Because LEDs often have strong blue peaks due to their phosphor-converted design, they must undergo blue light hazard testing to ensure they meet safety thresholds for human exposure. Whether for residential, commercial, or professional applications, LED products are expected to be classified as RG0 or RG1 to enter many global markets, making IEC 62471 testing a mandatory part of LED product development.

blue light hazard to eyes

Key Technical Parameters for Evaluating Blue Light Hazard

1. Blue Light Weighted Radiance (L_B)

Blue Light Weighted Radiance (L_B) is the core parameter used in IEC 62471 to quantify blue light hazard. It represents the radiance of a light source weighted by the blue light hazard function B(λ), which emphasizes wavelengths most harmful to the retina (around 435–440 nm). The unit is W·m⁻²·sr⁻¹, expressing how much blue-weighted energy reaches the eye per unit area and per unit solid angle.

How It Is Determined:

Testing involves measuring the spectral radiance of the source using a calibrated spectroradiometer. Each wavelength component is multiplied by the blue hazard weighting function B(λ), and the integration across 300–700 nm yields the final L_B value. IEC 62471 requires measurements at a standardized distance—typically 200 mm—and mandates that the test captures the maximum luminance point of the source. For LED strips, this means measuring the brightest chip or hotspot. COB strips usually show smoother radiance distribution, resulting in lower L_B compared with point-source SMD strips.

Blue Light Weighted Radiance test

2. Blue Light Radiant Exposure (H_B)

Blue light radiant exposure (H_B) refers to the total amount of blue-light-weighted energy delivered to the retina over time, taking both radiance and exposure duration into account. While L_B describes intensity at a moment, H_B represents cumulative exposure and is expressed in J·m⁻²·sr⁻¹. IEC 62471 uses H_B as a supporting parameter in scenarios where the source is extended or viewed at close range for longer periods. This parameter becomes essential in applications such as task lighting, displays, and luminaires installed in near-field environments.

3. Blue Light Hazard Exposure Limit (t_max)

To determine how long a person can safely view a light source, IEC 62471 defines the maximum permissible exposure time (t_max). It is derived by comparing the measured L_B to the exposure limit defined for blue light hazard. The simplified IEC expression is:

t_max = 100 / L_B

(Valid when L_B ≥ 100 W·m⁻²·sr⁻¹)

This means that as blue-light-weighted radiance increases, the allowable safe viewing time decreases sharply. For example, if L_B is 200 W·m⁻²·sr⁻¹, the maximum safe exposure would be just 0.5 seconds. This formula guides risk group classification and helps determine whether a product falls into RG0 (no risk), RG1 (low risk), RG2 (moderate risk), or RG3 (high risk). In LED lighting—especially strips and modules designed for direct viewing—meeting the t_max threshold is critical for ensuring safe usage and regulatory compliance.

YouTube 동영상

IEC 62471 Blue Light Hazard Risk Group Classification

IEC 62471 classifies lighting products into four risk groups based on their blue-light-weighted radiance (L_B) and the corresponding maximum safe exposure time (t_max). These categories help determine whether a product is safe for direct human viewing.

1. Risk Group 0 (RG0 – Exempt)

No photobiological risk.

Limit: L_B ≤ 100 W·m⁻²·sr⁻¹ or t_max ≥ 100 s.

2. Risk Group 1 (RG1 – Low Risk)

No hazard under normal viewing conditions.

Limit: L_B ≤ 10,000 W·m⁻²·sr⁻¹ or t_max ≥ 0.01 s.

3. Risk Group 2 (RG2 – Moderate Risk)

Hazard only if the viewer intentionally stares at the source.

Limit: L_B ≤ 400,000 W·m⁻²·sr⁻¹.

4. Risk Group 3 (RG3 – High Risk)

Hazard from even momentary exposure.

Limit: L_B > 400,000 W·m⁻²·sr⁻¹.

Example Blue Light Hazard Levels for Different Lighting Products

Lighting Product TypeTypical CCTOptic / DiffusionTypical Risk Group
COB LED Strip (frosted cover)3000KStrong diffusionRG0
COB LED Strip (bare)4000KNo coverRG1
SMD 2835 LED Strip (high density)4000KNo coverRG1
SMD 5050 RGB StripMixed wavelengthsNo coverRG1
Linear Light with PC Diffuser3000–4000KFrosted diffuserRG0
LED Downlight3000–5000KLens + reflectorRG1
High-Bay Industrial Light5000–6000KNarrow beamRG2
Stage / Studio LED Spotlight6000–8000KConcentrated beamRG2–RG3

How to Choose LED Strip Lights with Lower Blue Light Hazard

1. Choose Lower CCT LED Strips

Warm white LED strips (2700K–4000K) contain significantly less high-energy blue wavelength content. Lower CCT options naturally reduce blue light hazard and are ideal for residential, hospitality, and commercial ambient lighting.

2. Select High-CRI LED Strips

High-CRI LEDs use improved phosphor formulations that produce a smoother, fuller spectrum with reduced blue peaks. CRI 90+ or CRI 95+ strips generally deliver safer optical performance compared with low-CRI LEDs.

3. Prefer COB LED Strips Over SMD

COB strips feature continuous phosphor-coated emitters that eliminate intense point-source hotspots. Their uniform luminance results in lower blue-light-weighted radiance (L_B), making COB a safer choice than SMD in close-viewing applications.

거울 조명을 위한 모노 컬러 COB LED 스트립

Seamless COB Strip Light, Ra90, Compiant with IEC 62471

모형: FYX08T480X
입력 전압: DC12V/24V
전력: 11W/m
LED 수량: 480LED/m
CCT: 2700K, 3000K, 4000K, 6500K
CRI: >95
효율: 105lm/W
빔 각도: 180°
절단 섹션: 25mm/50mm
IP 등급: IP20/IP65/IP67/IP68
보증: 3년

4. Choose High-Efficacy, Low-Power Strips

LEDs driven at lower current generate less radiance and produce a more stable spectrum. High-efficiency low-wattage designs reduce both blue peak intensity and thermal stress. Check SignliteLED 180lm/W strip light FQM10T128C.

5. Use Diffused Solutions

Strips paired with diffusers—such as frosted silicone tubes, neon flex, or rigid aluminum channels with PC covers—significantly reduce peak luminance, lowering blue light hazard while improving visual comfort.

탑 벤드 T1010 실리콘 LED 네온 스트립

Top Bending Neon Strip Light

Model No.: NQX1010TC
입력 전압: DC12V/24V
와트: 8W/m
LED 수량: SMD2835 120LED/m
색온도: 2700K/4000K/6500K
CRI: Ra>80
Min Bending Diameter: 25mm
절단 가능한 길이: 100mm
길이: 5미터/롤

6. Choose LED Strips with IEC 62471 Certification

Always request a complete IEC 62471 report. Products rated RG0 or RG1 ensure compliance with global photobiological safety requirements.

SignliteLED offers IEC 62471-certified COB strip lights, low-CCT SMD LED strips, neon flex, and LED modules, providing safe and reliable solutions for professional lighting projects.

RG0 LED strip light

교량 및 파사드를 위한 DMX 제어 RGB 조명교량 및 파사드를 위한 DMX 제어 RGB 조명
DMX LED 벽면 세척기 및 픽셀 튜브 조명(외부 조명용)
정밀 제어 실외 조명으로 건물 외관을 밝게 비추세요. 상업용 건물, 랜드마크 및 도시 경관을 위한 건축 조명은 정밀도와 내구성이 필수적입니다. SignliteLED의 DMX LED 벽 튜브 및 리지드 바 조명은 신뢰할 수 있는 성능을 원하는 외관 설계자, 프로젝트 계약업체 및 OEM 조명 브랜드에 맞춤화된 전문 솔루션을 제공합니다....
중국 10대 LED 네온 스트립 제조업체 (2025)
중국의 10대 LED 네온 스트립 제조업체는 유연하고 에너지 효율적이며 시각적으로 멋진 조명 솔루션에 대한 전 세계적인 수요 증가를 충족하는 데 중추적인 역할을 하고 있습니다. 이러한 LED 네온 스트립 조명은 건축, 상업 및 사이니지 애플리케이션 전반에서 선호되는 선택이 되었습니다. 맞춤형 디자인을 만들 수 있는 능력으로 ...
LED 스트립 조명의 연색성 지수는 얼마나 중요할까요?
조명 분야에서 LED 스트립 조명은 에너지 절약, 유연성 및 긴 수명의 장점으로 인해 가정, 상업 및 산업 환경과 같은 다양한 시나리오에서 널리 사용되어 왔습니다. 광원의 능력을 측정하는 핵심 지표인 연색성 지수(CRI)는 ...
LED 스트립 조명에 적합한 LED 비드를 선택하는 방법LED 스트립 조명에 적합한 LED 비드를 선택하는 방법
LED 스트립 조명에 적합한 LED를 선택하는 방법
SignliteLED는 LED 스트립 조명 생산을 전문으로하는 제조업체로, 업계에서의 광범위한 경험을 통해 LED 선택 및 품질 제조의 중요성을 이해하는 데 도움이되었습니다. LED는 LED 스트립의 핵심 구성 요소이며 좋은 LED를 선택하는 것은 ...
LED 성장 조명에 대해 알아야 할 모든 것
LED 재배 조명은 최적의 광 스펙트럼을 제공하여 식물의 성장을 지원하도록 설계된 에너지 효율적인 조명 솔루션입니다. 낮은 열 방출, 긴 수명, 맞춤형 파장 등의 이점을 제공합니다. 이 가이드에서는 원리, 장점, 주요 매개변수, 적합한 조명을 선택하는 방법 등 알아야 할 모든 것을 다룹니다.
LED-네온 플렉스는 어떤 재료로 만들어졌습니까?LED-네온 플렉스는 어떤 재료로 만들어졌습니까?
LED 네온 플렉스는 어떤 재질로 만들어지나요?
최근 몇 년 동안 LED 네온 플렉스는 에너지와 환경을 고려한 조명 솔루션으로 인기를 얻고 있습니다. LED 네온 플렉스는 기존의 유리 네온 조명과 달리 실리콘 또는 PVC 재킷으로 덮인 작고 유연한 LED 조명으로 구성됩니다. 이 LED 조명은 안전하고 유지보수가 적은 ...

공유하다:

페이스북
지저귀다
핀터레스트
링크드인
구독하다
알림
guest
0 댓글
가장 오래된
최신 가장 많이 투표된
인라인 피드백
모든 댓글 보기

SignliteLED 블로그 검색

카테고리

위로

지금 견적을 받으세요